Approach to Analyze Time Series Similarity Pattern Mining Based on Haar
نویسندگان
چکیده
منابع مشابه
The Haar Wavelet Transform in the Time Series Similarity Paradigm
Abstract. Similarity measures play an important role in many data mining algorithms. To allow the use of such algorithms on non-standard databases, such as databases of financial time series, their similarity measure has to be defined. We present a simple and powerful technique which allows for the rapid evaluation of similarity between time series in large data bases. It is based on the orthon...
متن کاملPattern-Similarity-Based Model for Time Series Prediction
This research proposes a pattern/shape-similarity-based clustering approach for time series prediction. This article uses single hidden Markov model (HMM) for clustering and combines it with soft computing techniques (fuzzy inference system/artificial neural network) for the prediction of time series. Instead of using distance function as an index of similarity, here shape/pattern of the sequen...
متن کاملA Pattern Distance-Based Evolutionary Approach to Time Series Segmentation*
Time series segmentation is a fundamental component in the process of analyzing and mining time series data. Given a set of pattern templates, evolutionary computation is an appropriate tool to segment time series flexibly and effectively. In this paper, we propose a new distance measure based on pattern distance for fitness evaluation. Time sequence is represented by a series of perceptually i...
متن کاملFinding Time Series Discords Based on Haar Transform
The problem of finding anomaly has received much attention recently. However, most of the anomaly detection algorithms depend on an explicit definition of anomaly, which may be impossible to elicit from a domain expert. Using discords as anomaly detectors is useful since less parameter setting is required. Keogh et al proposed an efficient method for solving this problem. However, their algorit...
متن کاملA GPU-based parallel algorithm for time series pattern mining
Mining of time series pattern is an important research area, of which getting LCSS(Longest Common Subsequence) between high-dimensional time series is one of the most important issues. Large scale data needs to be handled in practical applications, so the research of efficient retrieval method is becoming a realistic work. Based on the issues above, we propose an efficient parallel algorithm to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Procedia
سال: 2011
ISSN: 1876-6102
DOI: 10.1016/j.egypro.2011.10.416